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ABSTRACT: Stirring in the subsurface Southern Ocean is examined using RAFOS float trajectories, collected during the

Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES), along with particle trajectories from a regional eddy

permittingmodel. A central question is the extent to which the stirring is local, by eddies comparable in size to the pair separation, or

nonlocal, by eddies at larger scales. To test this, we examine metrics based on averaging in time and in space. The model particles

exhibit nonlocal dispersion, as expected for a limited resolution numerical model that does not resolve flows at scales smaller than

;10 days or ;20–30 km. The different metrics are less consistent for the RAFOS floats; relative dispersion, kurtosis, and relative

diffusivity suggest nonlocaldispersionas theyare consistentwith themodelwithin error,whilefinite-sizeLyapunovexponents (FSLE)

suggests local dispersion. This occurs for two reasons: (i) limited sampling of the inertial length scales and a relatively small number of

pairs hinder statistical robustness in time-basedmetrics, and (ii) some space-basedmetrics (FSLE, second-order structure functions),

which do not average over wave motions and are reflective of the kinetic energy distribution, are probably unsuitable to infer

dispersion characteristics if the flowfield includes energetic wavemotions that do not disperse particles. The relative diffusivity, which

is also a space-basedmetric, allows averaging over waves to infer the dispersion characteristics. Hence, given the error characteristics

of the metrics and data used here, the stirring in the DIMES region is likely to be nonlocal at scales of 5–100 km.
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1. Introduction

Oceanic flows are turbulent over a large range of length

scales and are very efficient at stirring tracers along isopycnals,

enhancing the effects of molecular diffusion by many orders of

magnitude (Garrett 2006). The parameterization of this lateral

stirring is key to the proper representation of the oceanic

transport of heat, carbon, nutrients, and other climatically

important tracers in climate models (e.g., Gnanadesikan et al.

2015; Fox-Kemper et al. 2013). The details of these parame-

terizations are particularly important in the Southern Ocean,

where the surface is connected to the deep ocean via sloping

isopycnals and along-isopycnal stirring plays a key role in biological

production (Uchida et al. 2019, 2020) and ventilation of the deep

ocean (Marshall and Speer 2012; Abernathey and Ferreira 2015;

Balwada et al. 2018; Jones and Abernathey 2019). To ensure the

fidelity of these parameterizations, it is essential that quantitative

estimates of stirring are obtained using in situ measurements.

The nature and strength of the lateral or along-isopycnal

eddy stirring in the ocean depends on the length scales under

consideration. At length scales greater than the size of dominant

mesoscale eddies the stirring can approximately be expressed

as enhanced molecular diffusion with a constant eddy diffusivity

that is O(1000)m2 s21 (Zhurbas and Oh 2003; Koszalka et al.

2011; LaCasce et al. 2014; Balwada et al. 2016b; Roach et al.

2016, 2018). On the other hand, at scales smaller than the

typical mesoscale eddies, this eddy diffusivity generally in-

creases with the length scale (Richardson 1926; Okubo 1971).

At these scales two qualitatively different regimes are possible,

which canbecategorizedbasedonhowstirring influences the rateof

Lagrangian particle pair spreading or relative dispersion—nonlocal

and local dispersion (Bennett 1984). Nonlocal dispersion occurs

when the kinetic energy spectrum is steeper than k23; in this case

stirring is dominated by the largest eddies. Under local dispersion,

in contrast, stirring is dominated by eddies comparable in scale to

the size of the cluster or tracer patch. Knowledge about which

regime is active in the ocean can help to define parameterizations

of stirring for use in eddy-permitting models (Cushman-Roisin

2008; Kämpf and Cox 2016).

Observational characterization of the stirring regime is

practically difficult, and requires dense sampling with pairs of

Lagrangian instruments, which is why most previous studies

have focused on the surface ocean using surface drifters

(LaCasce and Ohlmann 2003; Koszalka et al. 2009; Lumpkin

and Elipot 2010; Poje et al. 2014; van Sebille et al. 2015; Sansón
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2015; Beron-Vera and LaCasce 2016; Corrado et al. 2017;

Essink et al. 2019). These studies have indicated that a single

universal stirring regime is not present everywhere in the sur-

face ocean; some regions show nonlocal dispersion up to

roughly the deformation scale and others show local dispersion

over the same scale range. Sometimes different metrics also

lead to contrasting results in the same region. The large-scale

dispersion varies as well, with some suggesting a transition to

diffusive spreading (dispersion grows linearly in time) (e.g.,

Koszalka et al. 2009) and other studies suggesting super-

diffusive motion (dispersion grows faster than linear in time)

most likely due to advection by the large-scale shear (e.g.,

LaCasce and Ohlmann 2003).

Deep ocean studies of stirring, which are very rare, rely on

sampling the flow using either an anthropogenic tracer (e.g.,

SF6) (Ledwell et al. 1998; Watson et al. 2013) or RAFOS floats

(Rossby et al. 1986). While a tracer is an excellent means for

measuring diapycnal diffusivities (Ledwell et al. 2000; Watson

et al. 2013; Ledwell et al. 2016), sampling the details of the

lateral spatiotemporal evolution of the tracer by ships is not

usually possible and thus limits its usefulness for diagnosing the

scale dependence of lateral stirring. RAFOS floats (Swift and

Riser 1994), which drift at depth and are acoustically tracked,

can be used to characterize and quantify the properties of

stirring by evaluating how rapidly float pairs disperse. We are

aware of only two previous studies that reported on relative

dispersion in the deep ocean (LaCasce and Bower 2000;

Ollitrault et al. 2005), both in the North Atlantic Ocean at

depths of about 1 km. LaCasce and Bower (2000) concluded

the dispersion in the westernAtlantic was either local or driven

by mean flow shear up to scales of approximately 100km, while

the particle pairs separated diffusively in the eastern Atlantic.

Ollitrault et al. (2005) also reported local stirring between

40 and 300 km, and some indications of nonlocal stirring at

shorter scales.

In this study, we examine stirring at length scales of

5–100 km and depths of 500–2000 m in the southeast Pacific

Ocean sector of the Antarctic Circumpolar Current (ACC),

using RAFOS floats deployed during the Diapycnal and

Isopycnal Mixing Experiment in the Southern Ocean (DIMES)

(Balwada et al. 2016b). The floats were deployed in pairs and

triplets to resolve smaller-scale dispersion. This work builds on

the studies by Tulloch et al. (2014), LaCasce et al. (2014), and

Balwada et al. (2016b), which had reported on the eddy diffusivity

in the DIMES experiment using both tracer and float observa-

tions at scales larger than the dominant mesoscale eddies.

To quantify the flow variability and stirring in the DIMES

region we use several different metrics.We start by quantifying

the flow variability at different scales using Lagrangian fre-

quency spectra and second-order structure functions in section 3.

Stirring or particle dispersion is a result of the integrated effect

of the flow variability, and is usually quantified and categorized

as local versus nonlocal using metrics that either quantify

temporal evolution or spatial structure (Table 1). The pair

separation probability distribution function (PDF), and its

moments, e.g., the relative dispersion and kurtosis, fall under

the time-based metrics. These quantify the temporal evolution

of the separation between pairs of particles and are discussed

in section 4. The relative diffusivity, discussed in section 5,

quantifies the rate of change of relative dispersion. As the

averages are conditioned by separation, the relative diffusivity

is a space-based metric. Finite-size Lyapunov exponents (FSLE),

discussed in section 6, quantify the rate at which particle pairs

at different scales separate and is also a space-based metric.

Space-based metrics advantageously employ more and more

pairs at larger separations, since the same pairs usually visit

the larger scales more often than the smaller scales. In contrast,

the time-based metrics are limited at all time by the number of

samples at the initial pair separation. A summary of the dif-

ferent metrics is presented in Table 1, and Table 2 provides a

quick overview of the results.

2. Data and methods

a. Lagrangian trajectories

Weexamine two sets of Lagrangian trajectories: RAFOS floats

released during the DIMES experiment (Balwada et al. 2016b),

and numerical particles advected in a MITgcm simulation of the

southeast Pacific Ocean and Scotia Sea (LaCasce et al. 2014).

The DIMES RAFOS floats, referred to as the floats in the

rest of the manuscript, were released in 2009 and 2010 along

the 1058W meridian and between 548 and 608S, spanning the

ACC at this F1 location (Figs. 1a,c). Acoustic tracking was

used to determine their position once per day. The motion of

the floats was primarily along isobars, and they were spread

over a depth range of 500–2000 m, with the greatest sampling

near depths of 750 and 1400 m (Fig. 1d). In this study we

grouped the floats into two depth bins: shallow (500–1000 m)

and deep (1000–1800 m), and only considered segments of the

trajectories to the west of 808W.The data to the east of 808W, in

the Scotia Sea, are not considered because the floats there

rarely came within 100 km of each other.

The MITgcm numerical particles, referred to as particles

in the rest of the manuscript, are the same as those used in

LaCasce et al. (2014) (Fig. 1b). The velocity fields used to ad-

vect the particles were simulated using the MITgcm with a

horizontal resolution of 5 km and 70 vertical levels. The model

domain spanned 1608–208W and 758–358S, and was forced at the

lateral boundaries by the Ocean Comprehensive Atlas (OCCA;

Forget 2010) and at the surface by ECMWF ERA-Interim 6h

wind fields (Berrisford et al. 2009). Details of the simulation

and comparison to hydrography can be found in Tulloch et al.

(2014). One hundred particles were released along 1508W at

20 vertical levels, between 758 and 608S, at the numerical grid

separation of 5 km every 10 days for 120 days—12 releases

totaling to 1200 particles. The particles were advected using

one-day averaged 3D velocity fields, since the model had negli-

gible variance at faster time scales. Correspondingly, the particle

positions were saved at a daily resolution. This provided 1200

particle trajectories at each of the 20 levels from 300 to 3000 m.

The velocity time series following the float and particle

trajectories was calculated using discrete forward differences

{u(t) 5 [x(t 1 dt) 2 x(t)]/dt}, except at the end points where a

backward difference was used. As the temporal resolution of

the floats (dt) is 1 day, the variability at periods faster than
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1 day (the inertial period is 14 h in this region) is aliased to

longer periods.

b. Pair selection

In this study, twodifferent kinds ofmetrics are considered; time-

based metrics averaged at a fixed time and space-based metrics

average at fixed spatial scales. The time-based metrics, such as

relative dispersion, are a conditional average over pairs with

the same initial pair separation (r0 6 d), and this averaging is

indicated by h.ir0. The space-based metrics, such as structure func-

tions, relative diffusivity, and finite size Lyapunov exponents, av-

erage over all pairs that pass through a separation bin, irrespective

of the initial pair separation, and this averaging is indicated by h�i.
Selecting pairs for time-based metrics conditioned on initial

separation (h.ir0) is trivial in the numerical model because the

particles were initialized on a discrete grid. We use particle pairs

that were initially released at the same depth and at a particular r0.

When considering the observations, a few choices need to be

made due to the following considerations: the floats are not re-

leased on a uniform grid, the floats are not all at the same depth

due to slight irregularities in instrument ballasting, and there are

some gaps in the float time series due to tracking problems.

When analyzing the floats, we use pairs that might be an

original pair, a pair released together, or a chance pair, a pair

that happens to pass in close proximity (r06 dr) due to the flow,

and we do not distinguish between the two in the rest of this

study (Morel and Larceveque 1974; LaCasce and Bower 2000).

We chose r0 to be relatively large to ensure that a sufficient

number of pairs are available; this caused most pairs to be

chance pairs as most original pairs were released at smaller

initial separation. In some cases a pair time series might return

to a separation of r0 at a later time; we considered this to be the

origin of a new chance pair time series if this return happened

at least 25 days after the first time the pair members were r0
apart. However, instances of this were rare and did not contribute

significantly to the samples used in this study. We use pair time

series with a length of 100 days, since the pair velocities generally

decorrelate before that time (shown later).Any pair with less than

25 days of data during this 100-day period is discarded. Finally,

to minimize the impact of vertical shear on the separation

rates we divided the floats into a shallow set (500–1000 m)

and a deep set (1000–1800 m), and only considered pairs with

trajectories vertically within 200 m of each other.

Two initial float separation sets, 10–15 km and 30–35 km,

were chosen to allow for sufficient sampling. The first baro-

clinic deformation radius in this region is approximately 15 km

(Chelton et al. 1998), hence the smaller initial separation set

partially sampled this scale. The shallow sets (500–1000 m)

contain approximately 50 and 100 pairs in the two r0 bins, and

the deep sets (1000–1800 m) contain approximately 90 and 180

pairs in the two r0 bins (Fig. 1e). The number of pairs in each set

did not vary substantially over the course of the 100 days

considered here. Most pairs evolved at vertical separations of

less than 50m (Fig. 1d). Since most of the strong vertical shear

in the interior ocean is associated with high-frequency wave-

like motions that do not cause much lateral dispersion, we

anticipate the impact of this high-frequency vertical shear on

most of the dispersion metrics to be small. Further, the mean
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vertical shear in this region is approximately O(1024) s21

(Balwada et al. 2016a), which can result in a net dispersion on the

order of 10 km2 in 10 days and 103 km2 in 100 days, which is

negligible compared to the observed relative dispersion (Fig. 5).

The corresponding particle analysis was performed on par-

ticle pairs that were released at initial separations of 11.1 and

33.3 km. There are 20 sets of model particles released between

500 and 2000 m, and each set was composed of between 1100

FIG. 1. (a) The 100-day trajectories of RAFOS floats and (b) a representative set of numerical particles from the

MITgcm simulation at different depths. The black dots indicate the position of the trajectory on the first day. The

climatological Sub-Antarctic Front (SAF) and Polar Front (PF) are marked by dashed purple lines (Orsi et al. 1995).

The gray colors represent the bathymetry, with the lightest contour color starting at 6000-m depth, and decreasing by

1000-m intervals as contour regions get darker. (c) The mean longitude of the RAFOS float trajectory pair vs the

number of days since 1 Jan 2009 at different depths. The first day when the pair formed—when the two trajectories

camewithin the relative separation threshold—ismarked as the black dot. (d) Themean pressure of the RAFOS float

trajectory pair vs the mean difference in pressure of the two trajectories, averaged over the first 100 days. (e) The

number ofRAFOSfloat pairs as a function of time conditionedon initial separation and in different depth ranges, used

for the time-basedmetrics. (f) The number ofRAFOSfloat pairs as a function of separation distance in different depth

ranges, used for the space-based metrics. The ‘‘o’’ markers indicate the center of the separation bin.
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and 1200 pairs. In most of the sections we focused on particles

released at depths of 750 and 1500 m. These set of particles are

qualitatively similar (have similar time scales and scaling re-

lationships) to the shallow and deep sets of floats, but an exact

quantitative match should not be expected. In section 3, where

we quantify the variability, we selected depths that enclose the

two sampled ranges, 500 and 900 m corresponding to the

shallow set and 1100 and 1700 m corresponding to the deep set.

For all space-based metrics, which parse data along a sepa-

ration axis (h�i), we defined separation bin edges as r(n) 5
anr(0)r(n)5 anr(0), where a 5 1.4 and r(0) 5 1 km. For floats,

we only used pairs that were separated by less than 100m in the

vertical. The numbers of float pairs in each bin for the shallow

and deep set are shown in Fig. 1f. The number of pairs increases

from less than 100 at the smallest separation to close to 10 000

at separations of 300 km, with the deeper set havingmore pairs.

For the particles more than 1000 pairs were available for each

separation bin (not shown).

All error bars in this study are derived using the boot-

strapping algorithm. We estimate the metric 1000 times, per-

forming random draws with repetition, and use the 5th and

95th percentiles as the limits of the error bars.

3. Temporal and spatial flow variability

In this section, we quantify the distribution of the kinetic en-

ergy at different temporal and spatial scales. This will provide a

helpful context to the stirring metrics that will be discussed later.

a. Rotary Lagrangian frequency spectra

Rotary spectra decompose the power in the velocity time

series into counterclockwise (positive frequencies) and clock-

wise (negative frequencies) motions at different time scales

(Thomson and Emery 2014), which correspond to anticyclonic

and cyclonic motions in the Southern Hemisphere, respectively.

Here we perform this spectral decomposition on the velocity

following the Lagrangian trajectory, using trajectory segments

of 120 days and the multitaper method (Lilly 2019).

The float rotary spectra show a plateau at low frequencies,

transitioning to a power law behavior with slope of about24 at

intermediate frequencies (Figs. 2a,b). At frequencies higher than

(10 days)21 a much flatter power law is observed. This flattening

of the spectra at high frequencies can potentially be attributed to

internal waves; near-inertial waves (NIWs); tides, which have

been aliased to these frequencies; and some contributions from

the position tracking errors. The cyclonic and anticyclonic com-

ponents of the float spectra are almost indistinguishable, with no

preference for a particular polarization, and the spectral energy

at the shallower depths is higher than at greater depths.

At the lower frequencies, the behavior of the particle spectra

is similar to the float spectra, with the low-frequency plateau

from the observations lying within the range of energy levels

from themodel at comparable depths (Figs. 2a,b). A power law

regime, with a slope of approximately 25, extends from in-

termediate to high frequencies. Thus, the model spectra lack

the high-frequency flattening seen in the observations, which

is a result of limited model resolution and the daily averaged

velocities used to advect the particles.

b. Longitudinal velocity structure function

Second-order velocity structure functions represent flow

correlations across spatial scales, and are related to the kinetic

energy spectra (Babiano et al. 1985; LaCasce 2016). The lon-

gitudinal second-order structure function is defined as

S2
ll
(r)5 (du(r) � r̂)2

D E
, (1)

where du(r) 5 u(x 1 r) 2 u(x)du(r)5u(x1 r)2 u(x) is the

velocity difference between two particles separated by distance

r, r̂ is the unit vector connecting these two particles.We assume

homogeneity and isotropy to drop the dependence on x and r̂,

respectively.

The second-order longitudinal structure function is re-

lated to the longitudinal frequency–wavenumber spectrum

[Ell(k, v)] via

S2
ll
(r)5 2

ð‘
0

�ð‘
0

E
ll
(k,v) dv

�
[12 J

0
(kr)] dk , (2)

where k is the horizontal wavenumber and J0() is the zeroth-

order Bessel function. Thus, S2ll(r) has contributions, filtered

by the Bessel function, from all wavenumbers and frequencies.

If the wavenumber energy spectrum follows a power law

[Ell(k)5
Ð ‘
0
Ell(k, v) dv; k2a] over a long enough range of

scales and 1, a , 3, then the integral is dominated by wave-

numbers near k ; 1/r and the structure function follows a

power law [S2ll(r) ; ra21]. While, if a . 3 then S2ll(r) ; r2 for

all n (Bennett 1984; Balwada et al. 2016a). At scales where the

velocities are uncorrelated the structure function is constant

and equals twice the velocity variance.

Both shallow and deep float S2ll (Figs. 2c,d) approach a

constant at scales larger than approximately 200 km, with this

length scale being slightly larger for the shallower floats. The

kinetic energy level, the large-scale constant value of S2ll, ob-

served by the shallower floats is approximately 3 times greater

than the deeper floats. For the shallow floats, S2ll follows a

power law of approximately r1 between separation of 20 and

100 km, and becomes flatter at smaller scales. For the deep

floats S2ll follows a power law that is slightly flatter than the

shallower floats, and closer to r2/3.

In contrast, the model structure functions are similar to

those expected for a flow with a kinetic energy spectrum

steeper than k23, with a power law behavior of r2 at small scales

and transitioning to uncorrelated motions at scales larger than

about 100–200 km. The kinetic energy level decreases with

depth similar to observations.

Thus, the structure functions also indicate energy at small

scales present in the observations but not in the model. This is

true for scales less than roughly 20 km and for times less than

about a week.

4. Relative dispersion and kurtosis

a. Theory

The characteristics of the stirring are encoded in how

the separation between particle pairs evolves, and can be
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quantified by considering the evolution of pair separation

PDF and its moments: relative dispersion (second mo-

ment), which is a measure of the size of the tracer cloud, and

kurtosis (normalized fourth moment).

The relative dispersion, the mean square pair separation,

evolution can be derived using purely kinematic arguments

(Babiano et al. 1990). These are based on the relative diffu-

sivity, the derivative of the relative dispersion r2,

k(tjr
0
)[

1

2

dr2(tjr
0
)

dt

5 hr
0
� dV(tjr

0
)i

r0
1

ðt
0

hdV(tjr
0
) � dV(tjr

0
)i dt , (3)

where dV(tjr0) is the relative velocity of a pair, and the

dependence on the initial condition r0 is explicitly noted.

For flow randomly seeded with particles, the correlation in

the first term of the RHS is typically small, as it was for both

particles and floats (not shown). At short times (t / 0),

Eq. (3) is approximated as k(tjr0) ’ tS2ll(r0), and the rela-

tive dispersion grows ballistically [r2 5 r20(11C1t
2)], where

C1 is a constant proportional to the total enstrophy). At

large times (t/ ‘), the relative velocities are uncorrelated
[hjdV(‘)j2ir0 5 4KE]. If the integral of the time correlation

of the relative velocities converges, then the relative dis-

persion grows linearly (r2 ; t) as for a diffusive process

(Taylor 1922).

Of primary interest are the scales at intermediate times,

when pair separations lie in the inertial range and pair ve-

locities are still correlated. Here, the stirring properties can

be well quantified using the pair separation PDF, from which

the relative dispersion derives. The separation PDF can be

FIG. 2. Mean Lagrangian frequency rotary spectra from the RAFOS floats (a) between 500 and 1000 m and

(b) between 1000 and 1800 m. The mean Lagrangian frequency rotary spectra from the model particles released at

mean depths of 500 and 900 m are shown in (a), and at depths of 1100 and 1700 m are shown in (b)—the spectra at

shallower depth in the model are more energetic. Power laws of v23 and v25 are also shown in (a) and (b). (c),(d)

Second-order longitudinal velocity structure functions for the RAFOS floats and model particles corresponding to

the same depths as (a) and (b), respectively. Power laws of r2/3 and r2 are also shown in (c) and (d).
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modeled using a Fokker–Plank (FP) equation (Richardson

1926; Bennett 2006),

›

›t
p5

1

r

›

›r

�
rk

›

›r
p

�
, (4)

where p(r, t) is the pair separation PDF, and k(r) is a diffusivity

as a function of separation r. The nth raw moment of the PDF

is defined as rn(t)5 2p
Ð ‘
0
rn11p(r, t) dr. This equation can be

solved for the turbulent inertial ranges (LaCasce 2010; Graff

et al. 2015), assuming all particle pairs have the same initial

separation. The inertial range slope enters via the relative

diffusivity [k(r)], which can be inferred from scaling. For

shallow-sloped KE spectra, where 1 , a , 3, the diffusivity

scales k(r) } r(a 1 1)/2, and the dispersion is characterized as

‘‘local.’’ For steeply sloped KE spectra, a $ 3, the relative

diffusivity scales as k(r) } r2, and the dispersion is ‘‘nonlocal.’’

When solving the FP equation, it is assumed the same diffu-

sivity applies across all scales.We list the analytical expressions

for the PDF, the relative dispersion and kurtosis for the

nonlocal regime, the Richardson regime (a particular local

regime), and the diffusive regime in Table 1.

b. Correlation and isotropy from floats and particles

Correlated pair velocities are expected at scales smaller than

those of the largest eddies. We define a pair velocity correlation

coefficient, r(tjr0)5 hu1(t) � u2(t)ir0=hju1(t)jir0hju2(t)jir0, which

can vary between 21 and 1. The subscripts on the velocity

correspond to two members of the pair. As expected, r(tjr0) for
floats and particles generally decreases as a function of time, and

the maximum value of r decreases as a function of initial sepa-

ration (Figs. 3a,b). Moreover, the rate of decrease is more rapid

for the shallower sets than the deeper sets.

Alternatively the correlation can be visualized as a function

of spatial scale by plotting r(tjr0) against the corresponding

mean pair separation [r*5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2(tjr0)

q
] (Koszalka et al. 2011;

Graff et al. 2015). This causes all the r(r*) curves to approxi-

mately collapse together (Fig. 3c), suggesting that the decrease

in correlation over time is a result of pairs exiting the range of

length scales over which the flow is correlated. This explains

why the correlation drops more rapidly for the shallower

depths, as the particles disperse faster there (seen clearly for

the model particles). The collapsed curves fall below 0.5 at a

length scale (r*) of approximately 60–70 km.

Most relative dispersion theory assumes the flow is isotropic.

We quantify isotropy as a ratio of the square root of the mean

zonal separation to the square root of the meridional separa-

tion (jrx*j/jry*j) (Morel and Larceveque 1974); this is 1 if the

zonal and meridional spreading is the same. For the shallow

floats and particles the ratio exceeds 1 after about 50 days

(Fig. 4a) and at length scales greater than 100 km (Fig. 4c),

while for the deeper sets the ratio stays close to 1 over 100 days

(Fig. 4b). The only exception is the shallow float set with r0 ;
10–15 km that shows enhanced zonal dispersion after only

10 days (though there are fewer than 50 pairs in this group).

The particles always exhibit a small ratio for the first few days,

which is due to the particles being deployed along a longitude

line. Thus, the dispersion is nearly isotropic at scales where the

velocities are correlated. Isotropy is discussed further in the

section on relative diffusivity (section 5b), where we show

more conclusively that the flow is isotropic at length scales

smaller than approximately 100 km.

c. Relative dispersion and kurtosis from floats and particles

Due to the small number of float pairs, it is difficult to

draw conclusions about PDFs themselves. The float PDFs

are statistically indistinguishable from both the nonlocal and

Richardson (local) theoretical PDFs (Table 1), while the particle

PDFs are suggestive of nonlocal dispersion. Details are given in

appendix B.

The relative dispersion increases in time, showing that on

average the floats and particles disperse (Figs. 5a,d). The dis-

persion for the floats and particles is very similar over the first

100 days, suggesting the additional high-frequency and small-

scale variability in the ocean does not contribute much to dis-

persion. At the shallower depth the relative dispersion increased

to 3002 km2 by the end of the 100 days for both initial separa-

tions, while the deeper relative dispersion was smaller. Toward

FIG. 3. Pair velocity correlations for trajectories at different depths with initial separation of (a) 10–15 and (b) 30–35 km. (c) Pair velocity

correlations plotted as a function of mean pair separation [r*5
ffiffiffiffiffiffiffiffiffiffi
r2(t)

p
] showing that correlation curves approximately collapse. Colors

correspond to different depths and different initial separations as indicated in the legends, while the observational (Obs) floats aremarked

by solid lines and model (Mod) particles by dashed lines. Black circles mark the first day for different the correlation time series in (c).
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the end of the 100 days the dispersion for most sets has transi-

tioned to a diffusive linear growth.

Under Richardson dispersion, the relative dispersion would

grow cubically in time. However, this asymptotic limit likely

cannot be achieved in the ocean because of the finite size of the

inertial ranges, andwould likely not be reflected in the data. So to

study the relative dispersion before the asymptotic limit is

reached, an expression for the Richardson dispersion at all times

was derived in Graff et al. (2015) (presented in Table 1); this

expression is relatively complex.However, we found (not shown)

that the less rigorous but simpler expression, (r2/30 1C2t)
3
, de-

rived by Ollitrault et al. (2005) is visually indistinguishable

from the more complex expression of Graff et al. (2015), when

both are plotted in a compensated form: r2
1/3

2 r2/30 . This form,

based on the expression from Ollitrault et al. (2005), re-

moves the dependence on initial condition and has a slope

FIG. 4. Isotropy, defined as ratio of mean zonal separation to mean meridional separation for pairs at different depths—(a) shallow and

(b) deep—and for different initial separations. (c) Isotropy ratio plotted as a function of mean pair separation r*.

FIG. 5. Relative dispersion as a function of time for different r0 and at different depths from the floats (solid lines) and particles (dashed

lines). (top) Shallow sets and (bottom) deep sets, where different colors correspond to different sets as indicated in the legends that are

shared between panels: (a),(d) the dispersion on a log–log axis; (b),(e) the dispersion normalized by the initial dispersion on a semilog axis

for ease of comparison to nonlocal dispersion; and (c),(f) the dispersion in a compensated form as indicated in the axis label for ease of

comparison against Richardson dispersion. The gray lines correspond to the linear (solid) and cubic (dashed) power laws.
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of one on a log–log plot under Richardson dispersion. The

compensated relative dispersion from the floats and particles,

using the compensated form, not show a distinct linear range

(Figs. 5c,f). Generally, the growth rate is faster than the expec-

tation from Richardson dispersion initially and then slower. A

short range from approximately 6–20 days for the shallower sets

and 15–30 days for the deeper sets shows a growth rate that

might be comparable to Richardson dispersion, but it is more

likely that this is simply a transition period. The shallow float set

with r0 ; 10–15 km is a slight exception, since it approximately

matches with Richardson dispersion from 2 to 40 days (also

true for kurtosis discussed next). As noted though this set has

few pairs, and thus the approximate match to Richardson

dispersion may not be robust.

If the dispersionwere nonlocal, it would growexponentially in

time. The relative dispersion, for both floats and particles, in-

creases rapidly for the first 10–25 days and then settles into a

slower growth afterward (Figs. 5b,e). The initial growth is not

distinguishable from exponential. For example, the relative

dispersion for the shallow particles with r0 5 11 km between 4

and 15 days suggests that exponential growth occurs up to ap-

proximately length scales of ;5r0 ’ 55 km. Similar phases of

exponential growth are also seen at other depths for the parti-

cles, and to some degree for the floats. This rapid growth ends

when the mean separation reaches r* ; 50–90 km for all cases

considered, and is thus shorter for larger r0. The relative

dispersion from the particles for the first 3–4 days shows a

slightly slower growth rate, which is likely a result of de-

pendence on initial conditions and a short phase of ballistic

growth (see further discussion in appendix B).

Under nonlocal dispersion, the kurtosis also grows expo-

nentially, while it asymptotes to 5.6 under 2D Richardson

dispersion; it asymptotes to 2 if the dispersion is diffusive

(Table 1) (LaCasce 2010). Local dispersion with a spectral

slope between 23 and 25/3 can also result in kurtosis sur-

passing 5.6 (Foussard et al. 2017).

The kurtosis from the floats and particles evolves similarly,

with a rapid initial increase for approximately 10–20 days fol-

lowed by a decay toward 2 (Fig. 6). The kurtoses do not rise to

very large values because r0 is large. The pairs in the tails of the

PDFs transition to the uncorrelated regime at about 10–20 days

(Fig. B1), so that the kurtosis could not rise to large values even

under exponential initial growth. Thus, one cannot distinguish

local or nonlocal dispersion at small scales based on the kurtosis.

But the similarity between float and particle kurtoses suggests the

floats disperse similarly to the particles.

Thus the pair separation moments from the floats and par-

ticles are similar within the errors. However, it is difficult to

distinguish the exact type of dispersion occurring at small

scales. This is likely due to the relatively large initial separa-

tions r0. Next we consider space-based metrics, which average

without any conditioning on r0.

5. Relative diffusivity

Now we examine the relative diffusivity. The initial sepa-

ration r0 is used to assign the spatial scale, so that k(r)’ k(tjr0)
[Eq. (3)]. We estimate k(r) using finite difference,

k(r)5 k(Dt/2jr
0
)’

dr2(Dt/2jr
0
)

dt
’

r2(Dtjr
0
)2 r2(0jr

0
)

Dt
. (5)

It is possible to use different time spacings, Dt, which we will

vary to estimate the longer time estimate of relative diffusivity

and to filter high-frequency motions in the observations. The

time spacing should also be small enough so that the diffusivity

is less than the asymptotic value of twice the single particle

diffusivity (LaCasce 2008). The single particle integral time

scale for the region is approximately 5–6 days (Balwada et al.

2016b); as discussed below, this works well as a practical esti-

mate of Dt. Further consideration about the link between

second-order structure function and relative diffusivity, effects

FIG. 6. Kurtosis (r4/r2
2
) as a function of time for the floats (solid

lines) and the particles (dashed lines) for different r0 and depths:

(a) shallow sets and (b) deep sets, and different colors correspond

to different sets as indicated in the legends. The horizontal lines

correspond to the kurtosis for Richardson dispersion (5.6, dashed

line) and simple diffusion (2, solid line).
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of the high-frequency motions, and theoretical guidance for

varying Dt is given in appendix C.

We first examine the dependence of k(r) on Dt using the

model particles. The diffusivities for the shallow and deep

particles with Dt 5 1 day increase as r2, up to scales of ap-

proximately 50–60 km, in line with a steep spectrum. At larger

scales the diffusivity flattens out. At still larger scales, the dif-

fusivity increases again, approximately as r4/3 (Fig. 7a). The

slope of the power law dependence for the particles between 6

and 50 km is not very sensitive to Dt up to moderate values,

;6 days for shallow and ;10 days for deep particles, but flat-

tens out with largerDt. This follows as pairs with smaller r0 start

to experience more uncorrelated motion and the relative dif-

fusivity asymptotes to the large-scale diffusivity, flattening the

slope (Fig. 7c). Increasing Dt to 6 days increases the magnitude

of the diffusivity for separations between 6 and 50 km, because

at 6 days the pairs are sampling larger scales than r0 with larger

diffusivities, but this does not change the power law depen-

dence significantly. The choice to plot the results hereafter

using 6 days is a pragmatic one; the slope of the relative dif-

fusivity of the shallow particles is not very sensitive within this

time frame, and 6 days is similar to the single particle integral

time scale for the floats in this region.

The float-derived diffusivities exhibit a different depen-

dence on Dt (Figs. 7a–c). With Dt5 1day, k(r) exhibits a power

law dependence close to r4/3 at scales smaller than 100 km. This

is consistent with S2ll(r) being flatter, as shown in section 3 [k(r,

t) ’ tS2ll(r) at short times (Babiano et al. 1990)]. As Dt is in-
creased, the power law steepens (Fig. 7c), and over a range of

intermediate values of Dt agrees well with the power law of the

particle diffusivity down to scales of 5km. This suggests in-

creasing Dt acts as a filter, removing the high-frequency motions

FIG. 7. Relative diffusivity as a function of separation scale. (a) Shallow and (b) deep estimates of k(r), for the

floats and particles with Dt of 1 and 6 days. (c) Slope of the relative diffusivity curve between 6 and 50 km as a

function of Dt. The horizontal gray lines are the values of the slope corresponding to nonlocal (2; solid) and

Richardson (4/3; dashed) dispersion. (d) Relative diffusivity estimated as k(r*, r0) for the deep floats and particles,

with Dt of 6 days. The gray lines correspond to the power laws expected for nonlocal (solid) and Richardson

(dashed) dispersion. The position of these gray lines is the same in the three panels [(a), (b), and (d)] and can be

used to compare the estimates more easily.
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that cause the relative diffusivity power law from the floats to be

flatter than that of the particles at short times. As with the par-

ticles, when Dt is increased further (Dt . 15 days) the slope

flattens, as the influence of the uncorrelated scales becomes

more dominant. It should be noted that a perfect match be-

tween the relative diffusivity slope dependence on Dt from
floats and particles at these longer Dt should not be expected,

because the floats are spread over a depth range and the

particle depths were chosen to only match the float depth

approximately (section 2).

Thus, the high-frequency motions present in the observa-

tions are responsible for the diffusivity’s weaker dependence

on r (local dispersion) when the evolution of the pairs over a

short time period is considered. However, the diffusivity’s

dependence on r steepens (nonlocal dispersion) when the

evolution of the same pairs over a few days is considered; in-

dicating that the smaller scales have a relatively weaker net

impact as some of the higher-frequency pulsation in separation

averages out to zero. We find that wave-like motions are a

likely process that can result in this observed behavior for the

relative diffusivity, as detailed in appendixes A and C.

As the mean flow here is nearly zonal (LaCasce et al. 2014;

Balwada et al. 2016a), the zonal and meridional diffusivities

reflect the stirring along and across the mean flow. Using the

longer time spacing (Dt 5 6 days), the zonal and meridional

diffusivities for the floats and particles are very similar, sug-

gesting isotropy up to roughly 100 km separations (Figs. 8a,c). At

larger scales, the zonal and meridional diffusivities diverge as the

flow becomes anisotropic and pair velocities are uncorrelated.

The zonal diffusivity continues growing with a scaling close to r4/3.

This anisotropic growth could be indicative of shear dispersion

(Bennett 1984; LaCasce 2008). At these scales of uncorrelated

motion the meridional diffusivity approaches a constant value

close to twice the single particle diffusivity estimate for the region

(LaCasce et al. 2014; Balwada et al. 2016b). At the correlated

scales, the meridional relative diffusivity is an increasing

FIG. 8. The zonal and meridional relative diffusivity k(r) for the (a) shallow and (c) deep floats and particles,

estimated with Dt of 6 days. The short black line at 500 km corresponds to twice the single particle diffusivity from

Balwada et al. (2016b). The gray lines correspond to the power laws expected for nonlocal (solid) and Richardson

(dashed) dispersion. The meridional relative diffusivity for the (b) shallow and (d) deep floats as a function of

separation and Dt is contoured. Values of 100 and 1000m2 s21 are contoured using dashed white lines.
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function of separation scale and time scale (Dt) and is greater at

the shallower depth (Figs. 8b,d).

Some studies [e.g., Sinha et al. (2019) and Sansón (2015)

most recently], estimate the scale dependence of relative dif-

fusivity by differentiating the relative dispersion time series

for a particular initial separation and assigning the mean sep-

aration [r*(t)] as the spatial scale [k(r*jr0)]. Using this estimate

(Fig. 7d), we were even unable to detect r2 regime for the

particles, possibly since the average occurs over a wider range

of scales. This estimate was very noisy for the floats.

6. Finite size Lyapunov exponents

a. Theory

Finite size Lyapunov exponents are an alternate way of

quantifying stirring, and measures the average time taken

[t(r)] for a pair of particles to grow in separation from scale of r

to ar, where a . 1 (Artale et al. 1997). FSLE (l) is defined as

l(r)5
log(a)

ht(r)i . (6)

Theoretical scalings for FSLE can derived based on turbu-

lent scaling arguments. If the stirring is local and the energy

spectrum follows a power law of k2a (a , 3), then the FSLE

scales as l(r) } r(a23)/2. Thus, for Richardson dispersion the

FSLE scales as l(r) } r22/3. For a$ 3, the FSLE converges to a

constant [l(r) } r0], and for uncorrelated diffusive spreading

l(r) } r22. These are summarized in Table 1.

b. FSLE from floats and particles

The floats were tracked daily, and the output of the particles

was saved daily. This sets an artificial discretization on the

possible values of l, which would particularly be an issue at

smaller r when particle pairs will separate to ar in one or two

time steps. To alleviate this issue, we linearly interpolated the

separation time series between the resolved times (LaCasce

2008; Lumpkin and Elipot 2010; Haza et al. 2014). The inter-

polation caused an increase in the value of the FSLE for floats,

and also slightly steepened the power law behavior at smaller

scales (not shown). The linear interpolation also increases the

value of FSLE slightly for the particles, but does not change the

power law behavior of FSLE (not shown). The FSLE estimated

using the linear interpolation was not sensitive to the size of the

bins (value of a, which is chosen to be 1.4 here).

The FSLE from the floats shows an approximate 22/3 de-

pendence at scales smaller than 100 km, at both the shallow and

deep levels (Fig. 9). At scales larger than 100 km the FSLE

slope becomes steeper, tending toward22. The FSLE from the

particles at scales smaller than 100 km is almost flat, and

markedly different from the floats. At scales greater than

100 km the FSLE from particles is almost identical to that from

floats. At the shortest scales, smaller than themodel resolution,

the particle FSLE slightly diverges from a constant, which is

presumably a result of interpolation used in particle tracking.

There is no qualitative difference between the results of the

shallow and deep sets, except for the time scales being faster at

shallower depth.

The results suggest the floats experience local dispersion and

the particles nonlocal dispersion at scales smaller than 100 km.

Both exhibit diffusive spreading at larger scales. The time scale

associated with the FSLE at small scales is 1–10 days, which is

where the high-frequency motions appear in the observations

(section 2). So thesemotions are likely associated with the local

dispersion seen here.

We consider the effects of high-frequency motion on the

FSLE further in appendix A. We show that wave energy at

time scales shorter than a day can be aliased to scales of 1–

10 days when the temporal resolution is a day; and this aliased

energy can potentially cause the FSLE to appear local even

when the dispersion is a result of nonlocal stirring. Thus, we

cannot conclude based on the float FSLE that the dispersion is

local, but the characterization of the particle FSLE being

nonlocal is appropriate.

7. Discussion

The southeast Pacific Ocean sector of the ACC, between

the East Pacific Rise and Drake Passage, was sampled by a

subset of DIMES RAFOS floats and simulated with an eddy-

permitting model. We provide an observational perspective

on turbulent stirring in the ACC at length scales comparable

to and smaller than the mesoscale eddies, in one of the few

observational studies that addresses relative dispersion in

the deep ocean. The stirring is quantified using time-based

and space-based metrics (summarized in Table 2).

At scales comparable to and larger than the mesoscale

eddies the pair velocities are uncorrelated, and the dispersion is

anisotropic. The meridional dispersion behaves like random

walk and zonal dispersion behaves like shear dispersion. The

FIG. 9. Finite scale Lyapunov exponents as a function of scale for

the shallow and deep sets of trajectories from the floats (solid line)

and particles (dashed line). The dashed lines correspond to dif-

ferent theoretical expectations: nonlocal (r0), Richardson (r22/3),

and simple diffusion (r22).
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meridional relative diffusivity saturates at a value near 1000m2 s21,

in agreement with single particle-based estimates (Balwada et al.

2016b; LaCasce et al. 2014; Tulloch et al. 2014). This is

approximately two orders of magnitude larger than the

relative diffusivity at scales smaller than 10 km, in agree-

ment with the estimates based on DIMES tracer roughness

(Boland et al. 2015).

At scales smaller than the mesoscale eddies the pair veloc-

ities are correlated, and the dispersion is isotropic. Under these

conditions the stirring can be characterized as local, primarily

influenced by eddies at the scales of the pair separations, or

nonlocal, primarily influenced by eddies that are much bigger

than the scales of the pair separations. Overall, we concluded

that the RAFOS floats likely experienced nonlocal stirring at

scales longer than a few inertial periods and at approximately

5–100 km in this part of the ocean, since at these scales their

dispersion is broadly similar to that of nonlocally dispersed

model particles. However, some important distinctions be-

tween the different time- and space-based metrics for the floats

and particles are present.

The time-based metrics, relative dispersion and kurtosis,

for the floats and particles are broadly consistent, but neither

floats nor particles could conclusively categorize the stirring

as local versus nonlocal. This consistency is not completely

expected, since the Lagrangian frequency spectrum and

second-order structure functions indicated that the floats

experienced a flow field that was more energetic than the

model, at scales less than roughly a week and 20–30 km. The

main issue with the time-based metrics was that in an effort to

have a sufficient number of samples, a relatively large initial

separation had to be selected. Having a large initial separa-

tion results in the pairs dispersing to the uncorrelated scales

relatively fast, which does not allow the distinct signatures of

the dispersion regimes to emerge very prominently.

The space-based metrics, relative diffusivity and FSLE, in-

dicated that the dispersion is local for the floats and nonlocal

for the particles, when these metrics are computed at the

sampling time scale of 1 day. For the relative diffusivity,

which allows integration in time, we found that after inte-

grating over time scale of 6 days the relative diffusivity from

the floats had the same characteristics as the relative diffu-

sivity from the particles at scales larger than 5 km. This sug-

gests that the highest-frequency motions have little or no

impact on dispersion. It is not possible to say from float tra-

jectories alone, but it is likely that the high-frequency range is

dominated by NIWs, internal wave continuum, and tides.

Independent observations suggest these high-frequency flows

are abundant in the ACC (e.g., Ledwell et al. 2011;Waterman

et al. 2013; Kilbourne and Girton 2015). Despite having su-

perinertial frequencies, this wave energy can be aliased into

the float positions, which are sampled once a day. We showed

in appendix A that adding linear waves, which do not add any

particle dispersion, to the nonlocally dispersed model particle

trajectories can make the space-based metrics to appear local

at length scales that are 20–30 times the displacement am-

plitude of these waves. Integrating the relative diffusivity in

time is found to be a practical way to recover the underlying

dispersion characteristics.

Linear waves have relatively little effect on lateral stirring of

Lagrangian particles (Holmes-Cerfon et al. 2011), but they can

cause appreciable stirring for a tracer that can diffuse diapyc-

nally (Young et al. 1982). Previously it was shown that inertial

oscillations have a similar minimal effect with surface drifter

pairs, contributing substantial energy to the structure functions

at small scales without impacting lateral dispersion (Beron-

Vera and LaCasce 2016). Local stirring at small scales has been

observed in several studies, most comprehensively in the global

drifter study of Corrado et al. (2017). The evidence for this

usually comes from space-basedmetrics.While it is certain that

superinertial motions affect energy spectra at submesoscales, it

remains to be seen to what extent these motions affect lateral

dispersion. At least in the present case, the effect appears to

be small.

Our conclusion of nonlocal dispersion from the floats is also

consistent with the behavior of the tracer released during the

DIMES experiment, which showed small irreversible diffu-

sivity during the initial filamentation phase up to the scales of

the mesoscale eddies, and growing irreversible diffusivity after

the tracer filaments start tomerge and form a large tracer cloud

(Zika et al. 2020). This is in line with the characteristics of

stirring and filamentation in the deep ocean that was hypoth-

esized by Garrett (1983), and has also been observed in the

North Atlantic during the North Atlantic Tracer Release

Experiment (NATRE; Sundermeyer and Price 1998).

We cannot entirely discount the possibility that small-scale

flows in the interior ocean can lead to some net dispersion,

particularly at the smallest scales (,10 km), and the true dis-

persion might be in some sense weakly local at these smaller

scales. Some recent studies have identified that submesoscale

flows with surface origins can penetrate appreciably below the

mixed layer (Yu et al. 2019; Siegelman 2020). Strong sub-

mesoscale flows and eddies in interior ocean, without any

surface association, can also potentially result from interaction

between internal waves and balanced flows (Thomas and

Yamada 2019), or result due to breaking waves creating mixed

patches that then coalesce into pancake vortices due to an in-

verse cascade (Sundermeyer et al. 2005; Polzin and Ferrari

2004), or be generated by flow interacting with topography and

spinning off eddies (Srinivasan et al. 2019; Vic et al. 2018;

Bracco et al. 2016). It is also possible that isobaric floats, which

do not follow water parcels in the vertical, can disperse away

from the water parcels that they were originally tracking

(Dewar 1980). However, it seems that the influence of these

small-scale flows, if they are present, does not appear as a first-

order effect in the metrics and at the scales considered here,

and if these scales are causing any significant stirring then it is

not easily distinguishable from sampling noise and biases.

Hence, it is also important to devise new metrics that will be

more sensitive to the stirring at smaller scales.

Most current ocean models use diffusive parameterizations

(Fox-Kemper et al. 2019), even at scales where the stirring is

not diffusive. Our hope is that the present observations will

inspire new stirring parameterizations (e.g., Kämpf and Cox

2016), along with efforts in improvement of parameterizations

of ocean energetics (Bachman et al. 2017; Zanna 2019), for

ocean models that partially resolve mesoscale eddies.

566 JOURNAL OF PHYS ICAL OCEANOGRAPHY VOLUME 51

Unauthenticated | Downloaded 02/02/21 07:17 PM UTC



Acknowledgments. DB and KS acknowledge support from

NSF OCE 1658479 and NSF OCE 1231803, and DB also ac-

knowledges additional support fromNSFOCE 1756882. JHLwas

supported by by the Rough Ocean project number 302743 under

the Norwegian Research Council. The code for all the anal-

ysis and figures is shared at https://github.com/dhruvbalwada/

mesoscale_stirring_dimes_floats, the RAFOS float dataset

is made publicly available by NOAA/AOML at https://

www.aoml.noaa.gov/phod/float_traj/data.php, and the pro-

cessed data can be made available at request to the corresponding

author.

APPENDIX A

Impact of Linear Waves on Space-Based and Time-Based
Metrics

Recent studies have shown that the space-based stirring met-

rics, which average the data into spatial bins, can sometimes re-

sult in misleading conclusions in the presence of linear waves,

which do not cause any net particle dispersion (Beron-Vera and

LaCasce 2016), or position errors in trajectories (Haza et al.

2014). For completeness, and because neither of the previous

studies considered all the metrics together, here we demonstrate

the biases in conclusions about the stirring regime that can occur

if monochromatic waves are added to the particle trajectories.

We modified the position vectors of the particle trajectory

pair members (Xi and Xj) by adding oscillations with a single

frequency,

X
i
/X

i
1A[sin (vt1f), cos (vt1f)2 1],

X
j
/X

j
1 [A1Bg (r)][sin (vt1f), cos (vt1f)2 1]. (A1)

Here A is the amplitude of the oscillation common to

both members, and B is the difference in the amplitude for

the pair member, with the function g(r) depending on pair

separation (r 5 jXi 2Xjj). The term v is the frequency, and

f is the starting phase of the waves. The function g(r)

models the change in amplitude as the particles move away

from each other. The function g(r) is modeled as a power

law with slope n below a length scale rL and a constant at

larger scales,

g(r)5

�
r

r
L

�n

, for r, r
L
, 5 1,

for r$ r
L
. (A2)

Beron-Vera and LaCasce (2016) employed a similar func-

tion in time rather than space, to mimic inertial oscillations in

the Gulf of Mexico. The variables A and B are prescribed

as random numbers from a uniform distribution that can

vary between 0–2Amax and 0–2Bmax. The starting phase f was

FIG. A1. The impact of adding monochromatic waves with inertial frequency to model trajectories on different metrics: (a) Lagrangian

frequency spectrum, (b) longitudinal structure function, (c) relative dispersion, relative diffusivity with (d) dT5 1 day and (e) dT5 6 days,

and (f) FSLE. All plots have data from five sets of trajectories: the original trajectories at a depth of 1500 m and the same with added waves of

different spatial properties, as noted in legend in (a). In (b), (d), (e), and (f) some lines corresponding to standard scalings are also added in gray.
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chosen as a random number on the interval (0, 2p). The fre-

quency v was set to the local inertial frequency. We ex-

perimented with different choices of the parameters (Amax,

Bmax, n, rL), and here we show results for four cases with

physically reasonable values: Amax 5 1.5 km, rL 5 50 km,

Bmax5 2 and 3.5 km, and n5 0.3 and 0.5. These values result in

waves that are reasonably close in magnitude to the NIWs

measured in the same region and during the same time as the

floats (Kilbourne and Girton 2015). Since the waves are

monochromatic and the inertial frequency [;1 (14 h)21] is

greater than the sampling frequency [;1 (24 h)21], the fre-

quency spectrum shows a peak in a narrow band at a lower-

frequency where most of the wave signal has been aliased

(Fig. A1a). We do not expect such a pronounced peak in the

observations because the waves in the ocean are spread over a

wider frequency range.

The space-based stirring metrics estimated using the modified

trajectories are qualitatively different from those estimated using

the original trajectories (Figs. A1b,d,f). The addition of waves

impacts the metrics significantly, with the range of influence de-

pending on the strength and spatial correlation of waves. For

example, the FSLE for n 5 0.5 and B 5 3.5 km (dashed purple

line in Figs. A1f), indicates local dispersion up to scales that are

;20–30 times larger than the relative amplitude of the waves.

Thus, high-frequency motions due to linear waves preferentially

impact the space-based metrics.

The time-based metrics are less affected: the relative dis-

persion (Fig. A1c), the separation PDFs, and kurtosis (not

shown). This is because the added oscillations cancel out when

integrated over time, with the integration time depending

on the noise magnitude; Fig. A1c shows that it takes ap-

proximately 5–8 days for the wave contributions to inte-

grate out of the relative dispersion with r0 5 11 km. This

initial influence on relative dispersion influences the relative

diffusivity–k(r) (Fig. A1d) when Dt is small. However, waves

can be filtered by increasing the Dt used to estimate the time

derivative (Fig. A1e), which allows for recovering the sub-

inertial signal. We used the same filtering method in section 5.

The objective herewas not to develop a realistic model for the

wave effects on the trajectories, but to simply show that wave

motions that do not disperse particle pairs can easily impact

some metrics commonly used to the infer the characteristics of

pair dispersion. Further, this is meant to be an Occam’s razor

approach—if all the small-scale motions absent in the model

were represented using onlywaves that do not disperse particles,

could theymake the metrics from the model looks similar to the

observations within realistic ranges of wave parameters?

APPENDIX B

Separation PDFs and Initial Evolution of Separation from
Floats and Particles

The pair separation PDFs provide direct insight into how the

turbulent flow stirs and disperses floats and particles. For easier

visualization we show the cumulative distribution function

(CDF), which is monotonic and varies between 0 and 1.

Qualitatively the evolution of the CDFs from the floats and

particles is very similar (Fig. B1). Only a small distinction is

seen in the initial behavior, when the float CDFs are wider than

the particle CDFs, which is simply a result of the float pairs

having a spread over the initial separation bin. During the first

5–10 days the pair separations spread to both larger and

smaller scales than r0, and after this the pair separations in-

crease on average as the trajectory clusters get more dispersed.

Also during the initial phase the mean pair separation (r*)

coincides with the separation where the CDF is around 0.8–0.9,

indicating that the long tails of the PDF are responsible for

FIG. B1. Pair separation cumulative distribution functions for the (a)–(d) floats and (e)–(h) particles. Each panel corresponds to a

different depth and different r0, as indicated in the panel titles. The contour color bar ranges from 0 to 1, with increment steps of 0.1. The

0.1, 0.5, and 0.9 contours are marked with dashed black lines, while the mean pair separation is the solid blue line.
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controlling the mean pair separation or dispersion. As time

progresses r* starts to coincide more with smaller values of the

CDF (’0.5–0.6), as is expected for diffusive pair separation.Also,

atmost times during the evolution the pairs occupy 1–2 decades of

spatial scales, suggesting that the pairs potentially sample many

different turbulent regimes, and the PDFs might only evolve like

the theoretical solutions for short periods of time.

We compare the PDFs of the float and particle pairs with

the different theoretical solutions using the two sample

Kolmogorov–Smirnov (KS) test, which is used to test the null

hypothesis that the data from two sets of samples comes from

the same continuous distribution (Berger and Zhou 2014). It

returns a KS statistic or p value, where a large p value (.0.05)

suggests that the null hypothesis cannot be rejected, implying

that the two sets of samples might have been sampled from

the same distribution. Here our first sample set was the sep-

arations measured by the float or particle pairs, while the

second sample set was 10 000 randomly generated samples

using the theoretical PDF (equations in Table 1).

To generate the random samples from the theoretical

PDFs, and compare against the float and particle PDFs, we

need two parameters: r0 and the growth parameters—b for

the Richardson or TL for the nonlocal dispersion. We do not

assume a priori that one regime is a better descriptor than the

other, instead we estimate the growth parameters corre-

sponding to both regimes and then use the KS test to check

how well do both the theoretical PDFs with the estimated

parameters match the measured separation PDF.

The parameter estimation is done by fitting the different

theoretical relative dispersion (equations in Table 1) to the

relative dispersion measured by the floats and particles (dis-

cussed in section 4d). Similar fittings to estimate parameters

were done by Graff et al. (2015) and Beron-Vera and LaCasce

(2016), where the fitting was done over the time period it took

for the mean separation to increase to some chosen multiple of

the initial separation. Here instead of fitting over a specified

period, we fit over a range of times, and test the sensitivity of

the parameters and PDF matching between theory and mea-

surements to the choice of the duration over which the fit is

done. We fit both the theoretical curves during the period

between day 0 and day ta, where ta ranges from 3 to 50 days,

using least squares fitting. The parameters are estimated even if

the theoretical curve is a poor fit to the dispersion, but since

these parameters also give a poor fit to the PDF they are ruled

out by the KS test. Using these estimated parameters (Fig. B2)

we calculated the KS statistic to compare the measured PDFs

against theoretical PDFs (Fig. B3).

The comparison of the float PDFs to the theoretical PDFs

suggests that for much of the time the PDFs measured by the

floats could correspond to both the Richardson and the non-

local PDF (Fig. B3), as ta is varied. This result is particularly

relevant when r0 5 10–15 km. The deep float set released with

initial r0 5 30–35 km is a notable exception; for ta . 20 days a

match to nonlocal regime is seen for approximately 10 days

followed by a Richardson regime from approximately 10 to

70 days (Figs. B3d,l). This suggests nonlocal stirring up to

scales of 50km andRichardson like stirring at scales larger than

50 km, where the length scale estimate is based on the mean

separation curve in Fig. B1d. A similar, but relatively less well

defined behavior is also seen for the shallow float set released

with the same initial r0 (Figs. B3b,j).

A comparison of the particle PDFs to the theoretical PDFs

shows different behavior compared to the float PDFs. The

particle PDFs are better determined due to having significantly

larger number of samples (.1000 pairs), which results in very

short periods over which the measured particle PDFs comply

with any of the two theoretical PDFs. All combinations of r0
and depths considered here show a range where the corre-

sponding particle PDF matched with the theoretical PDF

for nonlocal dispersion (Figs. B3e–h). The Richardson PDF

does not match the particle PDF at either of the depths for

FIG. B2. Theoretical parameters (a) TL and (b) b estimated by

fitting measured relative dispersion with theoretical relative dis-

persion (Table 1). Different depths and initial separations are in-

dicated by colors, while the parameters estimated using floats are

marked by solid lines and the parameters estimated using the

particles are marked by dashed lines. Panels (a) and (b) share their

legends.
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r0 5 11 km (Figs. B3m,o), while a match over a very short time

period is seen for r05 33 km (Figs. B3n,p). Notably none of the

particle sets matched either of the theoretical PDFs over the

first 5–10 days; this might be because the particles experienced

ballistic dispersion during this time (shown next). Overall,

these results suggest that the numerical model shows nonlocal

dispersion as expected.

The relative dispersion from the particles for the first 3–

4 days also showed a slower growth rate than exponential

(Figs. 5b,e), which is likely the result of dependence on initial

conditions and ballistic growth. Trajectory pairs need to lose

memory of their initial conditions for the canonical scaling

relationships to be expressed (Babiano et al. 1990; Nicolleau

and Yu 2004; Bourgoin et al. 2006; Foussard et al. 2017). We

quantify the rate of loss of memory of the initial conditions

using a memory index, M(tjr0)5 hr � r0ir0/r0r2
1/2
, which is a

measure of correlation between the pair orientation relative to

its initial orientation (Foussard et al. 2017). Both floats and

particles lose memory of their initial orientation as time

progresses (Fig. B4a). The memory index M(t) for the floats is

almost insensitive to the depth but depends strongly on r0,

whileM(t) for the particles varies more strongly with depth and

is relatively insensitive to r0.

During the initial phase, when pairs have not lost memory of

their initial conditions, the pairs disperse ballistically [r2(t)5
r20(11C1t

2)]. Since different choices of depth and r0 lead to

FIG. B3. Kolmogorov–Smirnov test statistic comparing the measured PDFs to the theoretical PDFs, plotted as a function of time and

time over which the relative dispersion is fit to estimate the parameters (ta). A value greater than 0.05, marked by black contour line,

suggests that the measured and theoretical PDFs are statistically similar. Rows 1 and 3 [(a)–(d) and (i)–(l)] compare the float PDFs to the

nonlocal and Richardson dispersion, while rows 2 and 4 [(e)–(h) and (m)–(p)] compare the particle PDFs to the nonlocal and Richardson

dispersion. The dashed blue vertical line corresponds to the time when themean pair separation (r*) reaches 100 km. The depth and initial

separation (r0) are indicated in the panel titles.
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different evolution of M(t), we define a time scale tm as the

time it takes forM(t) to reach a value of 0.6, and rescale time

using this time scale, tm 5 t/tm. The factor of 0.6 was chosen

because it caused all the different rescaled relative disper-

sion curves [r2(tmjr0)/r20 2 1] for the particles to collapse to-

gether during this initial phase (Fig. B4d), and also caused

M(tm) to approximately collapse (Fig. B4b). The particles

show a perfect ballistic growth up to approximately ;0.5tm,

after which the different curves diverge. The range of this

ballistic growth is observed approximately to length scales of

r* ’ 2–3r0, which are within the numerical model’s viscous

range. Foussard et al. (2017) also observed a similar ballistic

range in a family of two dimensional numerical models, and

noted that the departure from the ballistic regime seemed to

occur around the time that the mean separation became

comparable to the smallest length scales corresponding to

the start of the inertial ranges. The rescaled relative disper-

sion curves from the floats did not show such a clear range of

quadratic growth, and were relatively noisy (Fig. B4c), which

is probably a result of high-frequency variability resulting

in a very rapid loss of memory of initial conditions that is not

properly quantified by M(t).

APPENDIX C

Relative Diffusivity and Waves

Here we show that waves, which can be a dominant part of

energy spectrum or the second-order structure function at the

submesoscales, may not impact the relative diffusivity. As k is

related to the relative velocity autocorrelation, it can be ex-

pressed in terms of the wavenumber–frequency energy spec-

trum (Bennett 1984; Babiano et al. 1990), as

k(r, t)5 2

ð‘
0

ð‘
0

�
E

ll
(k,v)[12 J

0
(kr)]

ðt
0

R(k,v, t) dt

�
dv dk.

(C1)

This equation is similar to Eq. (2) for the longitudinal

second-order structure function, except that it is weighted

FIG. B4. (a) The memory index, quantifying how quickly the dependence on initial condition is lost for all

different choices of depth and r0. The legend for all the figures in shown in (b). (b) The memory index plotted as a

function of rescaled time tm 5 t/tm, where tm is the time it takes for M(t) to reach a value of 0.6. (c) Float and

(d) particle relative dispersion plotted in compensated form as a function of rescaled time tm, to identify if a ballistic

regime is observed. In (c) and (d) power laws have been plotted for reference as labeled in the legend in (d).
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by the integral of the normalized wavenumber–frequency

Lagrangian energy spectrum R(k, v, t). The energy spec-

trum R(k, v, t) is the Lagrangian autocorrelation for flows

of wavenumber k and frequency v, defined as R(k, v, t) 5
Ull(k, v, t)/Ull(k, v, 0), where

U
ll
(k,v, t)5

1

(2p)
3

ððð
hu

l
(x1 r, t1T , t)

3u
l
(x, t, t2 t)i exp(ik � r1vT) d2r dT , (C2)

andUll(k,v, 0)5 (2pk)21Ell(k,v). The term ul(x, t, t2 t) is the

longitudinal velocity at time (t 2 t) of a trajectory r that passes

through x at time t, while ul(x 1 r, t 1 T, t) is the longitudinal

velocity at time t1 T at a location x1 r. The purpose of having

two time lags: anEulerian time (T) and a Lagrangian time (t), in

contrast to only a Lagrangian time as in Bennett (1984), is to be

able to do a spectral decomposition in frequency. The depen-

dence on x and t on is dropped assuming homogeneity in space

and stationarity in time of the underlying Eulerian flow field.

At small times the R(k, v, t) is 1, and k(r, t) ’ tS2ll(r); im-

plying that the relative diffusivity and second-order structure

function follow the same scaling (Babiano et al. 1990). If time is

longer than the integral time scales [t � TI(k, v)] for all

wavenumbers and frequencies but smaller than the uncorre-

lated limit, then the relative diffusivity follows,

k(r)5 2

ð‘
0

ð‘
0

fE
ll
(k,v)T

I
(k,v)[12 J

0
(kr)]g dv dk . (C3)

HereTI(k, v)5
Ð ‘
0
R(k, v, t) dt acts as a filter inEq. (C3), and

modulates the extent to which the Ell(k, v) at each wavenumber

and frequency impacts the stirring. The integral time scale that is

usually estimated from the single-particle velocity autocorrelation

(LaCasce 2008; Balwada et al. 2016b) is equivalent to the integral

of TI(k, v) over all wavenumber and frequency. The estimate of

relative diffusivity in Eq. (C3) is the estimate that we are inter-

ested in, since we care about the integrated impacts of stirring.

Since linear waves do not contribute significantly to stirring

(Holmes-Cerfon et al. 2011; Bühler et al. 2013), the wave-

numbers and frequencies composed primarily of waves will

have TI ’ 0 and the kinetic energy of these scales will not

contribute to the relative diffusivity estimate in Eq. (7).

Balwada et al. (2018) showed that a conceptually similar result

is also true for the time-mean vertical tracer flux, where the

wavenumber–frequency energy spectrum of the vertical velocity

has a dominant peak at the superinertial frequencies, as a result

of linear waves, but the corresponding cross-spectrum of the

vertical tracer flux has no contribution from these scales. Scaling

based estimates of relative diffusivity (discussed toward the

end of section 4a), which stem from 2D turbulence theory,

assume the flow is not composed of any linear waves, and thus

all of the kinetic energy spectrum contributes to the relative

diffusivity.
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